Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.338
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38571317

RESUMEN

Two cost-effective packing materials were used for n-butyl acetate removal in lab-scale biofilters, namely waste spruce root wood chips and biochar obtained as a byproduct from a wood gasifier. Three biofilters packed with spruce root wood chips: without biochar (SRWC), a similar one with 10% of biochar (SRWC-B) and that with 10% of biochar impregnated with a nitrogen fertilizer (SRWC-IB) showed similar yet differing maximum elimination capacities of 206 ± 27, 275 ± 21 and 294 ± 20 g m-3 h-1, respectively, enabling high pollutant removal efficiency (>95% at moderate loads) and stable performance. The original biochar adsorption capacity was high (208 ± 6 mgtoluene g-1), but near 70% of it was lost after a 300-day biofilter operation. By contrast, the exposed impregnated biochar drastically increased its adsorption capacity in 300 days (149 ± 7 vs. 17 ± 5 mgtoluene g-1). Colony forming unit (CFU) and microscopic analyses revealed significant packing material colonization by microorganisms and grazing fauna in all three biofilters with an acceptable pressure drop, up to 1020 Pa m-1, at the end of biofilter operation. Despite a higher price (14 vs. 123 €m-3), the application of the best performing SRWC-IB packing can reduce the total investment costs by 9% due to biofilter volume reduction.


Asunto(s)
Acetatos , Carbón Orgánico , Filtración , Tolueno , Biodegradación Ambiental
2.
Bioinspir Biomim ; 19(3)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38579733

RESUMEN

African shrimp (Atya gabonensis) inhabit clear freshwaters, where the notably low concentration of food may pose a challenge to the efficacy of filter fibers on the chela for filter-feeding. Here, we investigate how the distinctive cross-sectional characteristics and spatial arrangement of the African shrimp's non-circular fibers contribute to the enhanced filtration performance of these specialized fibers. The unilateral thickening of the wall along the long axis of the elliptical cross-section of African shrimp fibers markedly enhances the filtration performance. The staggered and twisted arrangement of the fibers optimizes the surrounding flow field, achieving a favorable balance between pressure drop and collection efficiency, consequently improving their filtration performance in collecting fine particles (diameter: 2-10µm). Moreover, the arrangement of the fibers substantially increases the effective flow-facing filtering area of the fiber bundles, thus facilitating their efficiency in collecting larger particles (diameter > 10µm). The unique fiber properties of the African shrimp offer novel insights for the design and optimization of new fiber-filtering robots, presenting a wide range of potential applications, such as marine in-situ resource extraction, medical filtration, and industrial filtration.


Asunto(s)
Filtración , Estudios Transversales
3.
J Environ Manage ; 357: 120824, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38583379

RESUMEN

Extending the solids retention time (SRT) has been demonstrated to mitigate membrane biofouling. Nevertheless, it remains an intriguing question whether the compact and water flushing resistant mesh biofilms developed at short SRT can undergo biodegradation and be removed with extended SRT. In present study, the bio-fouled mesh filter in the 10d-SRT dynamic membrane bioreactor (DMBR), with mesh surfaces and pores covered by compact and water flushing resistant biofilms exhibiting low water permeability, was reused in the 40d-SRT DMBR without any cleanings. After being reused at 40d-SRT, its flux driven by gravity occurred from the 10th day and recovered to a regular level of 36.7 L m-2·h-1 on the 27th day. Both scanning electron microscope (SEM) and confocal laser scanning microscopy (CLSM) analyses indicated that the compact mesh biofilms formed at10d-SRT biodegraded and were removed at 40d-SRT, with the residual biofilms becoming removable by water flushing. As a result, the hydraulic resistance of the bio-fouled mesh filter decreased from 4.36 × 108 to 6.97 × 107 m-1, and its flux fully recovered. The protein and polysaccharides densities in mesh-biofilms decreased from 24.4 to 9.7 mg/cm2 and from 10.7 to 0.10 mg/cm2, respectively, which probably have contributed to the disappearance of compact biofilms and the decrease in adhesion. Furthermore, the sludge and mesh-biofilms in the 40d-SRT reactor contained a higher relative abundance of dominant quorum quenching bacteria, such as Rhizobium (3.52% and 1.35%), compared to those in the 10d-SRT sludge (0.096%) and mesh biofilms (0.79%), which might have been linked to a decline in extracellular polymeric substances and, consequently, the biodegradation and disappearance of compact biofilms.


Asunto(s)
Incrustaciones Biológicas , Aguas del Alcantarillado , Biopelículas , Incrustaciones Biológicas/prevención & control , Filtración , Reactores Biológicos/microbiología , Membranas Artificiales
4.
Int J Pharm Compd ; 28(2): 120-127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38604149

RESUMEN

The great majority of sterile products commercially available as well as prepared in compounding pharmacies are sterilized by sterile filtration during aseptic processing. This brief and basic review will highlight the nature, action, and use of sterilizing filters. Special emphasis is given to how filters are validated in producing a sterile filtrate while being compatible with the filtered solution, as well as how filters are integrity tested during aseptic processing.


Asunto(s)
Filtración , Farmacias , Esterilización
5.
Water Sci Technol ; 89(7): 1630-1646, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619894

RESUMEN

Due to the colloidal stability, the high compressibility and the high hydration of extracellular polymeric substances (EPS), it is difficult to efficiently dehydrate sludge. In order to enhance sludge dewatering, the process of ultrasonic (US) cracking, chitosan (CTS) re-flocculation and sludge-based biochar (SBB) skeleton adsorption of water-holding substances to regulate sludge dewaterability was proposed. Based on the response surface method, the prediction model of the specific resistance to filtration (SRF) and sludge cake moisture content (MC) was established. The US cracking time and the dosage of CTS and SBB were optimized. The results showed that the optimal parameters of the three were 5.08 s, 10.1 mg/g dry solids (DS) and 0.477 g/g DS, respectively. Meantime, the SRF and MC were 5.4125 × 1011 m/kg and 76.8123%, which significantly improved the sludge dewaterability. According to the variance analysis, it is found that the fitting degree of SRF and MC model is good, which also confirms that there is significant interaction and synergy between US, CTS and SBB, and the contribution of CTS and SBB is greater. Moreover, the process significantly improves the sludge's calorific value and makes its combustion more durable.


Asunto(s)
Quitosano , Aguas del Alcantarillado , Ultrasonido , Carbón Orgánico , Filtración , Agua , Eliminación de Residuos Líquidos/métodos
6.
PDA J Pharm Sci Technol ; 78(2): 196-205, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38609151

RESUMEN

Session 7 of the 2023 Viral Clearance Symposium reviewed progresses in virus retentive filtrations applied to both upstream and downstream processing. Upstream topics included investigations and applications of media viral filtration for upstream cell culture viral risk mitigation. Downstream topics included evaluation of viral breakthrough in continuous processing using surrogate particles and demonstration of extensive viral filtration cycling with flow interruptions and long duration in connected process. Reuse of viral filters with proposed procedures was successfully demonstrated amid the supply chain challenge encountered during the pandemic. Discussions and additional considerations for the topics were also provided.


Asunto(s)
Técnicas de Cultivo de Célula , Filtración , Cinética , Pandemias
7.
PDA J Pharm Sci Technol ; 78(2): 141-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38609152

RESUMEN

The 2023 Viral Clearance Symposium (VCS) was hosted by Takeda on 24 and 25 May 2023 in Vienna, Austria. The present conference extended the structure of the previous biennial symposia held between 2009 and 2019. As recapitulated in the introductory session, the genesis of the VCS, as described in the Proceedings of the 2009 VCS was "the worldwide regulatory and industry recognition that challenges, gaps, and opportunities exist, that it formally addressed could benefit the field as whole." This report provides a synopsis of the progress achieved at the conference resulting from detailed technical discussions and the pending questions that still require attention to address. The 2023 VCS was composed of nine individual sessions of short presentations followed by in-depth panel discussions from the presenters. Sessions included Regulatory Updates (with a focus on ICH Q5A(R2) efforts), including a summary of lessons learned from the 2019 VCS, and progress on these key areas mapped into 2023 VCS topics: Viral Clearance Strategy and Case Studies, New Modalities in Chromatography and Adsorptive Filters, Continuous Processing, Viral Clearance Strategy and Process Understanding, Virus Inactivation, Upstream and Downstream Virus Retentive Filtration and Cell Banks, and Advanced Technologies (advanced therapy medicinal products, next-generation sequencing).


Asunto(s)
Filtración , Secuenciación de Nucleótidos de Alto Rendimiento , Adsorción , Industrias , Cinética
8.
J Exp Biol ; 227(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38629316

RESUMEN

Filter-feeding demosponges are modular organisms that consist of modules each with one water-exit osculum. Once a mature module has been formed, the weight-specific filtration and respiration rates do not change. Sponge modules only grow to a certain size and for a sponge to increase in size, new modules must be formed. However, the growth characteristics of a small single-osculum module sponge are fundamentally different from those of multi-modular sponges, and a theoretically derived volume-specific filtration rate scales as F/V=V-1/3, indicating a decrease with increasing total module volume (V, cm3). Here, we studied filtration rate (F, l h-1), respiration rate (R, ml O2 h-1), volume-specific (F/V) and weight-specific (F/W) filtration rates, and the ratios F/R and F/W along with growth rates of small single-osculum demosponge Halichondria panicea explants of various sizes exposed to various concentrations of algal cells. The following relationships were found: F/V=7.08V-0.24, F=a1W1.05, and R=a2W0.68 where W is the dry weight (mg). The F/R and F/W ratios were constant and essentially independent of W, and other data indicate exponential growth. It is concluded that the experimental data support the theoretical F/V∝V-1/3.


Asunto(s)
Poríferos , Agua , Animales , Respiración , Filtración , Frecuencia Respiratoria
9.
Sci Rep ; 14(1): 8830, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632265

RESUMEN

Face masks are essential in reducing the transmission of respiratory infections and bacterial filtration efficiency, a key parameter of mask performances, requires the use of Staphylococcus aureus and specialised staff. This study aims to develop a novel method for a preliminary screening of masks or materials filtration efficiency by a green, easy and rapid setup based on the use of a riboflavin solution, a safe autofluorescent biomolecule. The proposed setup is composed of a commercial aerosol generator commonly used for aerosol therapy, custom 3D printed aerosol chamber and sample holder, a filter for downstream riboflavin detection and a vacuum pump. The filtration efficiency of four different masks was assessed using the riboflavin-based setup and the bacterial filtration efficiency (BFE). The averaged filtration efficiency values, measured with both methods, were similar but were higher for the riboflavin-based setup (about 2% for all tested samples) than bacterial filtration efficiency. Considering the good correlation, the riboflavin-based setup can be considered validated as an alternative method to bacterial filtration efficiency for masks and related materials fabrics filtration efficiency screening but This study aims to develop a novel method for a preliminary screening of masks or materials filtration efficiency by a green, easy and rapid setup based on the use of a riboflavin solution, a safe autofluorescent biomolecule, but not to replace regulation approaches. The proposed setup can be easily implemented at low price, is more rapid and eco-friendly and can be performed in chemical-physical laboratories without the needing of biosafety laboratory and specialised operators.


Asunto(s)
Máscaras , Dispositivos de Protección Respiratoria , Humanos , Aerosoles y Gotitas Respiratorias , Filtración , Aerosoles
10.
Environ Monit Assess ; 196(5): 476, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662019

RESUMEN

The ingestion of Ti-containing nanoparticles from drinking water has emerged as a concern in recent years. This study therefore aimed to characterize Ti-containing nanoparticles in water samples collected from four water treatment plants in Taiwan and to explore the challenges associated with measuring them at low levels using single particle-inductively coupled plasma mass spectrometry. Additionally, the study sought to identify the most effective processes for the removal of Ti-containing nanoparticles. For each water treatment plant, two water samples were collected from raw water, sedimentation effluent, filtration effluent, and finished water, respectively. Results revealed that Ti-containing nanoparticles in raw water, with levels at 8.69 µg/L and 296.8 × 103 particles/L, were removed by approximately 35% and 98%, respectively, in terms of mass concentration and particle number concentration, primarily through flocculation and sedimentation processes. The largest most frequent nanoparticle size in raw water (112.0 ± 2.8 nm) was effectively reduced to 62.0 ± 0.7 nm in finished water, while nanoparticles in the size range of 50-70 nm showed limited changes. Anthracite was identified as a necessary component in the filter beds to further improve removal efficiency at the filtration unit. Moreover, the most frequent sizes of Ti-containing nanoparticles were found to be influenced by salinity. Insights into the challenges associated with measuring low-level Ti-containing nanoparticles in aqueous samples provide valuable information for future research and management of water treatment processes, thereby safeguarding human health.


Asunto(s)
Titanio , Contaminantes Químicos del Agua , Purificación del Agua , Taiwán , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Nanopartículas del Metal , Filtración , Agua Potable/química
11.
Sci Rep ; 14(1): 9089, 2024 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643225

RESUMEN

Patients in intensive care are exposed to the risk of microparticle infusion via extracorporeal lines and the resulting complications. A possible source of microparticle release could be the extracorporeal circuit used in blood purification techniques, such as continuous renal replacement therapy (CRRT). Disposable components of CRRT circuits, such as replacement bags and circuit tubing, might release microparticles such as salt crystals produced by precipitation in replacement bags and plastic microparticles produced by spallation. In-line filtration has proven effective in retaining microparticles both in in-vitro and in-vivo studies. In our study, we performed an in-vitro model of CRRT-treatment with the aim of detecting the microparticles produced and released into the circuit by means of a qualitative and quantitative analysis, after sampling the replacement and patient lines straddling a series of in-line filters. Working pressures and flows were monitored during the experiment. This study showed that microparticles are indeed produced and released into the CRRT circuit. The inclusion of in-line filters in the replacement lines allows to reduce the burden of microparticles infused into the bloodstream during extracorporeal treatments, reducing the concentration of microparticles from 14 mg/mL pre in-line filter to 11 mg/mL post in-line filter. Particle infusion and related damage must be counted among the pathophysiological mechanisms supporting iatrogenic damage due to artificial cross-talk between organs during CRRT applied to critically ill patients. This damage can be reduced by using in-line filters in the extracorporeal circuit.


Asunto(s)
Terapia de Reemplazo Renal Continuo , Oxigenación por Membrana Extracorpórea , Humanos , Oxigenación por Membrana Extracorpórea/métodos , Filtración , Presión
12.
Environ Sci Technol ; 58(13): 5878-5888, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38498471

RESUMEN

Data-driven machine learning (ML) provides a promising approach to understanding and predicting the rejection of trace organic contaminants (TrOCs) by polyamide (PA). However, various confounding variables, coupled with data scarcity, restrict the direct application of data-driven ML. In this study, we developed a data-knowledge codriven ML model via domain-knowledge embedding and explored its application in comprehending TrOC rejection by PA membranes. Domain-knowledge embedding enhanced both the predictive performance and the interpretability of the ML model. The contribution of key mechanisms, including size exclusion, charge effect, hydrophobic interaction, etc., that dominate the rejections of the three TrOC categories (neutral hydrophilic, neutral hydrophobic, and charged TrOCs) was quantified. Log D and molecular charge emerge as key factors contributing to the discernible variations in the rejection among the three TrOC categories. Furthermore, we quantitatively compared the TrOC rejection mechanisms between nanofiltration (NF) and reverse osmosis (RO) PA membranes. The charge effect and hydrophobic interactions possessed higher weights for NF to reject TrOCs, while the size exclusion in RO played a more important role. This study demonstrated the effectiveness of the data-knowledge codriven ML method in understanding TrOC rejection by PA membranes, providing a methodology to formulate a strategy for targeted TrOC removal.


Asunto(s)
Nylons , Purificación del Agua , Ósmosis , Purificación del Agua/métodos , Membranas Artificiales , Filtración
13.
Environ Sci Technol ; 58(14): 6181-6191, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38536729

RESUMEN

Flow-electrode capacitive deionization (FCDI) is a promising technology for sustainable water treatment. However, studies on the process have thus far been limited to lab-scale conditions and select fields of application. Such limitation is induced by several shortcomings, one of which is the absence of a comprehensive process model that accurately predicts the operational performance and the energy consumption of FCDI. In this study, a simulation model is newly proposed with initial validation based on experimental data and is then utilized to elucidate the performance and the specific energy consumption (SEC) of FCDI under multiple source water conditions ranging from near-groundwater to high salinity brine. Further, simulated pilot-scale FCDI system was compared with actual brackish water reverse osmosis (BWRO) and seawater reverse osmosis (SWRO) plant data with regard to SEC to determine the feasibility of FCDI as an alternative to the conventional membrane processes. Analysis showed that FCDI is competent for operation against brackish water solutions under all possible operational conditions with respect to the BWRO. Moreover, its distinction can be extended to the SWRO for seawater conditions through optimization of its total effective membrane area via scale-up. Accordingly, future directions for the advancement of FCDI was suggested to ultimately prompt the commercialization of the FCDI process.


Asunto(s)
Cloruro de Sodio , Purificación del Agua , Filtración , Electrodos , Agua de Mar
14.
Bioresour Technol ; 399: 130622, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518877

RESUMEN

This study presents the development and application of a cellulose acetate phase-inversion membrane for the efficient harvesting of Tetraselmis sp., a promising alternative for aquaculture feedstock. Once fabricated, the cellulose acetate membrane was characterized, and its performance was evaluated through the filtration of Tetraselmis sp. broth. The results demonstrated that the developed membrane exhibited exceptional microalgae harvesting efficiency. It showed a low intrinsic resistance and a high clean water permeability of 1100 L/(m2·h·bar), enabling high-throughput filtration of Tetraselmis sp. culture with a permeability of 400 L/(m2·h·bar) and a volume reduction factor of 2.5 ×. The cellulose acetate -based membrane demonstrated robust filtration performance over a 7-day back concentration filtration with minimum irreversible fouling of only 22.5 % irreversibility even without any cleaning. These results highlighted the potential of cellulose acetate as a versatile base polymer for custom-membrane for microalgae harvesting.


Asunto(s)
Celulosa/análogos & derivados , Chlorophyta , Microalgas , Filtración , Polímeros
15.
J Emerg Med ; 66(4): e477-e482, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38433037

RESUMEN

BACKGROUND: Medical equipment can become scarce in disaster scenarios. Prior work has reported that four sheep could be ventilated together on a single ventilator. Others found that this maneuver is possible when needed, but no one has yet investigated whether cross-contamination occurs in co-ventilated individuals. OBJECTIVE: Our goal was to investigate whether an infection could spread between co-ventilated individuals. METHODS: Four 2-L anesthesia bags were connected to a sterilized ventilator circuit that used heat and moisture exchange filters and bacterial and viral filters, as would be expected in this dire scenario. Serratia marcescens was inoculated into "lung" no. 1. After running for 24 h, each lung and three additional points in the circuit were cultured to see whether S. marcescens had spread. These cultures were examined at 24 and 48 h to assess for cross-contamination. This entire procedure was performed three times. RESULTS: S. marcescens was not found in lung no. 2, 3, or 4 or the three additional sites on the expiratory limb at 24 and 48 h in all three trials. CONCLUSIONS: Cross-contamination does not occur within 24 h using the described ventilator circuit configuration.


Asunto(s)
Contaminación de Equipos , Ventiladores Mecánicos , Humanos , Bacterias , Filtración , Pulmón , Respiración Artificial
16.
Sci Total Environ ; 926: 171648, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38521277

RESUMEN

In this study, a high-solid anaerobic membrane bioreactor was established for treating food waste, and membrane fouling rates were regulated through multivariate modulation. The anaerobic membrane bioreactor operated stably at a high organic loading rate of 28.75 gCOD/L/d achieved a methane production rate of 8.03 ± 0.61 L/L/d. Experimental findings revealed that the most effective control of membrane fouling was achieved at a filtration- relaxation ratio (F/R) of 10/90 s. This indicates that a higher relaxation frequency provided improved the mitigation of membrane fouling. Compared with single F/R modulation, the combined modulation of biochar and F/R provided enhanced control over membrane fouling. Moreover, the addition of biochar altered the sludge properties of the reactor, thereby preventing the formation of a dense cake layer. Additionally, biochar enhanced the sheer force of the fluid on the membrane surface and facilitated the separation of pollutants during the relaxation stage, thereby contributing to improved control of membrane fouling.


Asunto(s)
Carbón Orgánico , Eliminación de Residuos , Eliminación de Residuos Líquidos , Anaerobiosis , Alimentos , Reactores Biológicos , Aguas del Alcantarillado , Filtración , Membranas Artificiales
17.
Food Chem Toxicol ; 187: 114583, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518883

RESUMEN

Any functional change in cigarette filter design warrants a rigorous assessment to ensure comparability to existing filter functionality. This study compares the functionality of a standard CA filter with a novel cellulose-based alternative using a combination of emissions, in silico approaches, pre-clinical assessments and behavioural studies. We assess the challenges faced with a significant filtration change, the substantiation of this change and the limitations of such assessments. We explore cigarette emission chemical profiles; assess the potential toxicological impacts (in vitro and statistical modelling) of the differing chemical profiles of cigarette smoke aerosol resulting from the respective filter types; and, finally investigate the behavioural aspects associated with use of the novel filter as compared to the traditional one. The aim of the study was to establish a weight of evidence assessment framework for the comprehensive evaluation of a novel cigarette filter design as part of robust stewardship approach. The data show comparability to a standard CA filter across all assessments and highlight potential areas of investigation for future novel filter product iterations. The approach demonstrates the applicability of a comprehensive step-wise assessment framework to identify any potential increased toxicant emissions and exposures associated with using the novel filter.


Asunto(s)
Productos de Tabaco , Tabaco , Aerosoles , Filtración , Celulosa
18.
J Hazard Mater ; 469: 134064, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38513444

RESUMEN

Water vapor from respiration can severely accelerate the charge dissipation of the face mask, reducing filtration efficiency. Moreover, the foul odor from prolonged mask wear tends to make people remove their masks, leading to the risk of infection. In this study, an electro-blown spinning electroactive nanofibrous membrane (Zn/CB@PAN) with antibacterial and deodorization properties was prepared by adding zinc (Zn) and carbon black (CB) nanoparticles to the polyacrylonitrile (PAN) nanofibers, respectively. The filtration efficiency of Zn/CB@PAN for PM0.3 was > 99% and could still maintain excellent durability within 4 h in a high-humidity environment (25 â„ƒ and RH = 95%). Moreover, the bacterial interception rate of the Zn/CB@PAN could reach 99.99%, and it can kill intercepted bacteria. In addition, the deodorization rate of Zn/CB@PAN in the moist state for acetic acid was 93.75% and ammonia was 95.23%, respectively. The excellent filtering, antibacterial, and deodorizing performance of Zn/CB@PAN can be attributed to the synergistic effect of breath-induced Zn/CB galvanic couples' electroactivity, released metal ions, and generated reactive oxygen species. The developed Zn/CB@PAN could capture and kill airborne environmental pathogens under humid environments and deodorize odors from prolonged wear, holding promise for broad applications as personal protective masks.


Asunto(s)
Nanofibras , Humanos , Antibacterianos , Ácido Acético , Zinc , Amoníaco , Filtración
19.
Water Res ; 254: 121383, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38432002

RESUMEN

The gravity-driven membrane (GDM) system is desirable for energy-efficient water treatment. However, little is known about the influence of cations on biofilm properties and GDM performance. In this study, typical cations (Ca2+ and Na+) were used to reveal the combined fouling behavior and mechanisms. Results showed that Ca2+ improved the stable flux and pollutant removal efficiency, while Na+ adversely affected the flux. Compared with GDM control, the concentration of pollutants was lower in Ca-GDM, as indicated by the low biomass, proteins, and polysaccharides. A heterogeneous and loose biofilm was observed in the Ca-GDM system, with roughness and porosity increasing by 43.06 % and 32.60 %, respectively. However, Na+ induced a homogeneous and dense biofilm, with porosity and roughness respectively reduced by 17.48 % and 22.04 %. The richness of bacterial communities increased in Ca-GDM systems, while it decreased in Na-GDM systems. High adenosine triphosphate (ATP) concentration in Ca-GDM system was consistent with the abundant bacteria and their high biological activity, which was helpful for the efficient removal of pollutants. The abundance of Apicomplexa, Platyhelminthes, Annelida and Nematoda increased after adding Ca2+, which was related to the formation of loose biofilms. Computational simulations indicated that the free volumes of the biofilms in Ca-GDM and Na-GDM were 13.7 and 13.2 nm3, respectively. The addition of cations changed intermolecular forces, Ca2+ induced bridging effects led to large and loose floc particles, while the significant dehydration of hydrated molecules in the Na-GDM caused obvious aggregation. Overall, microbiological characteristics and contaminant molecular interactions were the main reasons for differences in GDM systems.


Asunto(s)
Contaminantes Ambientales , Purificación del Agua , Membranas Artificiales , Filtración/métodos , Biopelículas , Purificación del Agua/métodos , Cationes
20.
Chemosphere ; 353: 141650, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462183

RESUMEN

Recently, gravity-driven membrane (GDM) filtration has been adopted as an alternative solution for decentralized wastewater treatment due to easy installation and maintenance, reduced energy and operation cost, and low global warming impact. This study investigated the influence of microplastic size (0.5-0.8 µm and 40-48 µm) and amount (0.1 and 0.2 g/L) on the membrane performance and microbial community in GDM systems for primary municipal wastewater treatment. The results showed that dosing microplastics in the GDM systems led to 9-54% lower permeate flux than that in the control. This was attributed to more cake formation (up to 6.4-fold) with more deposition of extracellular polymeric substances (EPS, up to 1.5-fold) and divalent cations (up to 2.1-fold) in the presence of microplastics, especially with increasing microplastic amount or size. However, the dosed microplastics promoted formation of heterogeneous cake layers with more porous nature, possibly because microplastics created void space in the cake and also tended to bind with divalent cations to reduce EPS-divalent cations interactions. In the biofilm of the GDM systems, the presence of microplastics could lower the number of total species, but it greatly enhanced the abundance of certain dominant prokaryotes (Phenylobacterium haematophilum, Planctomycetota bacterium, and Flavobacteriales bacterium), eukaryotes (Stylonychia lemnae, Halteria grandinella, and Paramicrosporidium saccamoebae), and virus (phylum Nucleocytoviricota), as well as amino acid and lipid metabolic functions. Especially, the small-size microplastics at a higher dosed amount led to more variations of microbial community structure and microbial metabolic functions.


Asunto(s)
Incrustaciones Biológicas , Microbiota , Purificación del Agua , Aguas Residuales , Microplásticos , Plásticos , Cationes Bivalentes , Membranas Artificiales , Filtración/métodos , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...